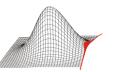


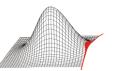
Meta-model-based Quality Assessment of Sample Estimates

Andriy Prots, Lars Högner, Matthias Voigt, Ronald Mailach Andriy.Prots@tu-dresden.de

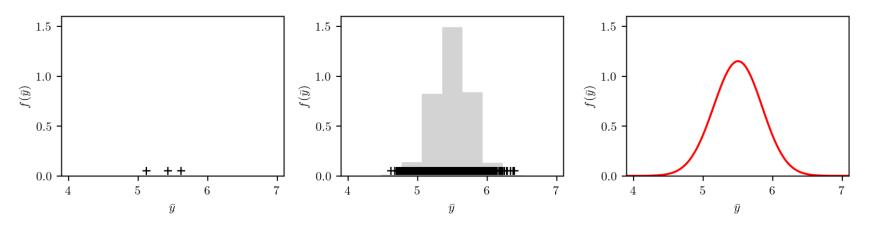
Dresden, October 10, 2019

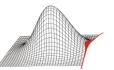


- 1. Motivation
- 2. Theoretical Foundation
- 3. Presentation of the new Methods
- 4. VMCS A Framework for Application
- 5. Summary

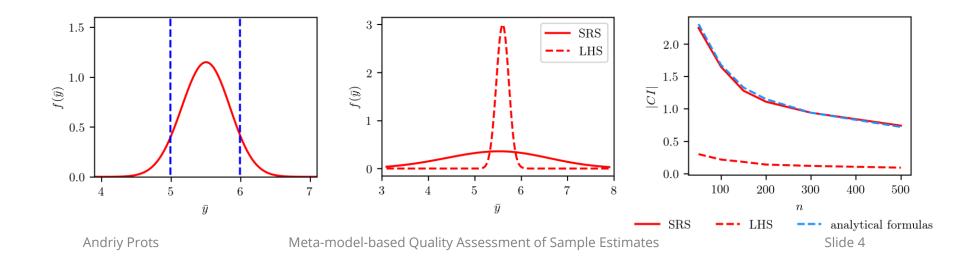


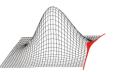
- Probabilistic Methods are gaining in importance
- Monte Carlo simulation (MCS):
 - Sample of representative realizations (e. g. with Simple Random Sampling (SRS))
 - > Calculation of the sample with deterministic methods
 - Statistical evaluation of the results (Mean, Variance, Quantile value, Correlation Coefficient)
- Sample is generated randomly → Result of a MCS is also random





- Value to describe the variance of the result: Confidence Interval (CI)
- Real CI: repetitions of MCS required
- Determinable by analytical formulas or bootstrapping
- Latin Hypercube Sampling is used to reduce variance of result
- > Problem 1: Known methods cannot describe the variance reduction
- Problem 2: Factor of variance reduction is unknown





➤ Goal:

- > Predicting the size of CI more precisely, when using LHS
- Reduce required sample size to reach a target size of CI

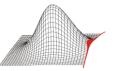
Idea:

- > Approximate system behavior with meta model (MM)
- Simulate MCS with help of MM
- Evaluate virtual MCS

Assumption:

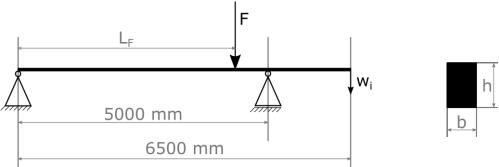
- Good description of system behavior with MM
- > Real MCS can be approximated with virtual MCS

2.1. Test case: Beam



Faculty of Mechanical Science and Engineering | Institute of Fluid Mechanics | Chair of Turbomachinery and Flight Propulsion

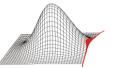
Beam system:



- Input values:
 - Height *h* (uniform in [95 *mm*; 105 *mm*])
 - ▶ Width *b* (uniform in [45 *mm*, 55 *mm*])
 - > Young's module *E* (normal with $\mu = 210\ 000\ GPa$ und $\sigma = 10\ 000\ GPa$)
 - Force *F* (normal with $\mu = 2500 N$ und $\sigma = 300 N$)
 - > Position of the Force L_F (uniform in [0 mm, 6 500 mm])
- Output value:
 - > Deflection w_i at the end (calculated by beam theory)

Andriy Prots

Meta-model-based Quality Assessment of Sample Estimates



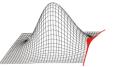
> MCS: description of system behavior based on a random sample

Required steps:

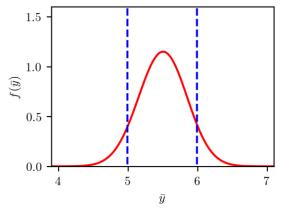
- Generate samples
- Evaluate sample with deterministic models
- Evaluate the results statistically

Possible result values:

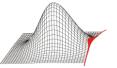
- > Mean
- Variance / Standard deviation
- Quantile values
- Correlation coefficient



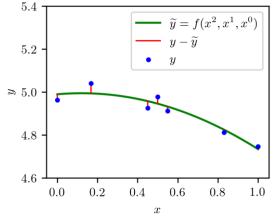
- Confidence Intervals (CI): describes the variance of a result value of MCS
- Significance level α : CI contains the real value in $(1 \alpha) * 100\%$ of the cases
- Smaller CI → result can be more trusted
- Possibilities of determining the CI
 - Repetition of MCS (not practical)
 - Analytical formulas
 - \succ E. g. for mean: $\bar{y} \pm z_{1-\frac{\alpha}{2}} \sigma / \sqrt{n}$
 - Bootstrapping



- > Assumption: realization within sample are independent
- Reduction of variance from LHS is not considered!

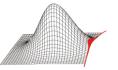


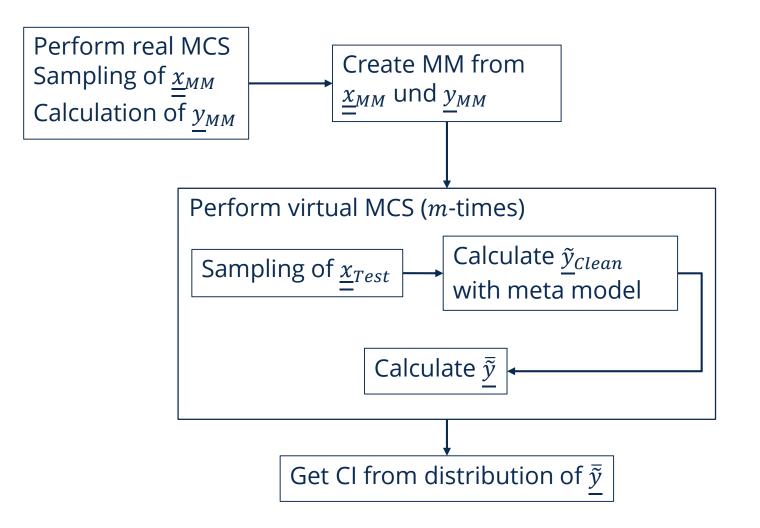
- > Meta model (MM): description of system behavior with simple approach
- E. g. polynomial meta model:
 - $\tilde{y} = c_0 + c_1 x_1 + c_2 x_2 + c_3 x_1^2 + c_4 x_2^2$
- Determination of coefficients: least square approach



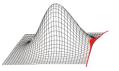
- Quality Assessment:
 - > Coefficient of Determination $R^2 = 1 \frac{\sum_{i=1}^{n} (y_i \tilde{y}_i)^2}{\sum_{i=i}^{n} (y_i \bar{y})}$
 - Cross validation

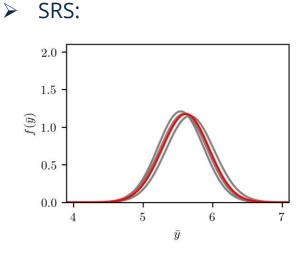
3.1. Method M1

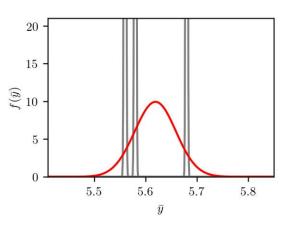




3.1. Method M1

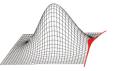






- Works only for SRS
- Variance of mean heavily underestimated for LHS
- > Reason: Error of the meta model $\varepsilon = y \tilde{y}$

3.2. Method M2



 $\blacktriangleright \quad \text{Impact of } \varepsilon = y - \tilde{y}:$

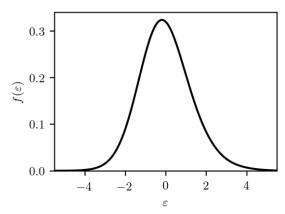
$$y = \tilde{y} + \varepsilon$$

$$\bar{y} = \bar{\tilde{y}} + \bar{\varepsilon}$$

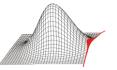
$$Var(\bar{y}) = Var(\bar{\tilde{y}} + \bar{\varepsilon}) = Var(\bar{\tilde{y}}) + 2Cov(\bar{\tilde{y}}; \bar{\varepsilon}) + Var(\bar{\varepsilon})$$

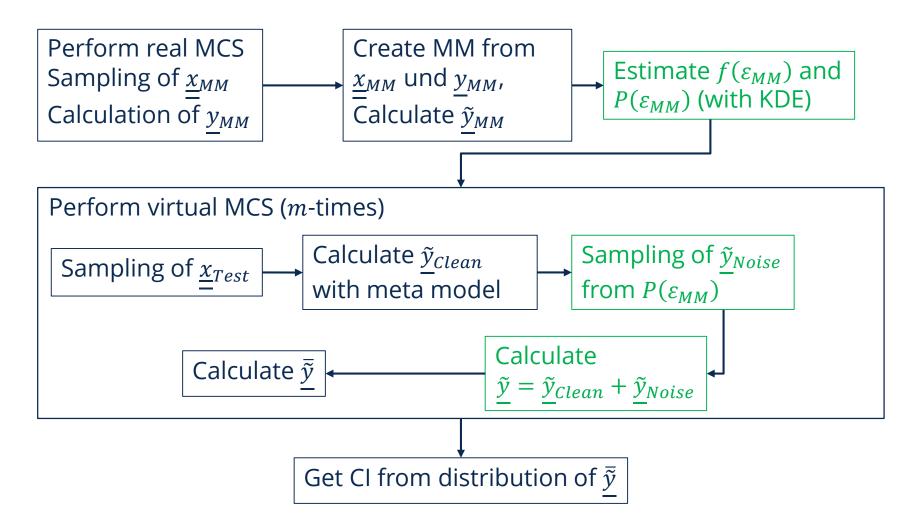
Assumption: Independence between \tilde{y} and $\varepsilon \Rightarrow Cov(\bar{\tilde{y}}; \bar{\varepsilon}) = 0$ $Var(\bar{y}) = Var(\bar{\tilde{y}}) + Var(\bar{\varepsilon})$

- > Problem: for LHS often $Var(\bar{\varepsilon}) \gg Var(\bar{\tilde{y}})$
- > Solution: generate additional sample for ε
- Since independence between \tilde{y} and ε is assumed: only P(ε) is required
- Approximation of $f(\varepsilon)$ with kernel density estimation (KDE), Approximation of $P(\varepsilon)$ with numerical integration

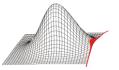


3.2. Method M2





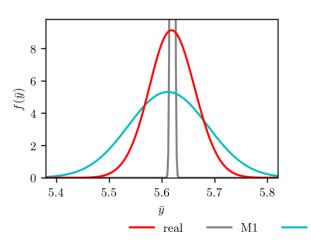
3.2. Method M2

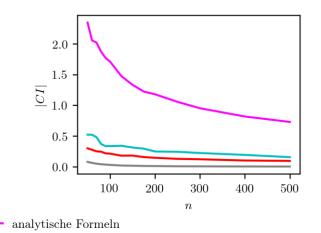


Faculty of Mechanical Science and Engineering | Institute of Fluid Mechanics | Chair of Turbomachinery and Flight Propulsion

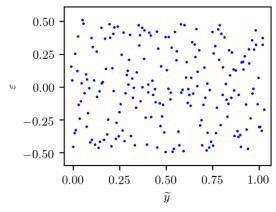
M2

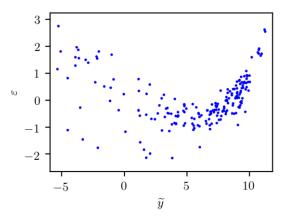
> LHS





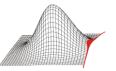
- Prediction of variance is better
- But: is the assumption correct?





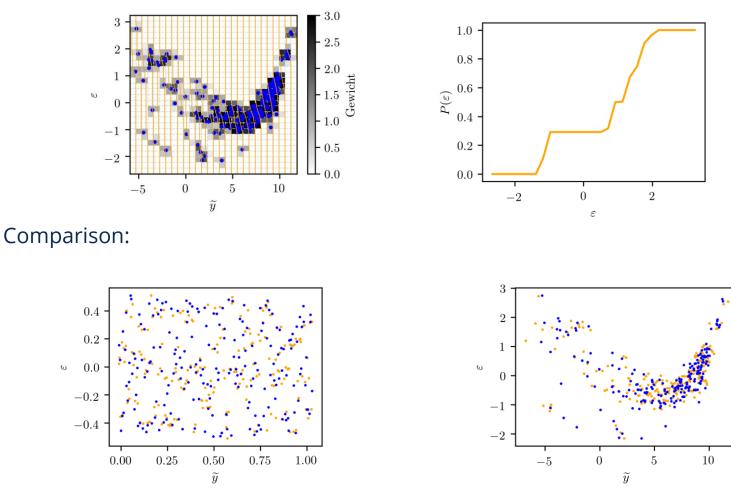
Meta-model-based Quality Assessment of Sample Estimates

3.3. Method M3



Faculty of Mechanical Science and Engineering | Institute of Fluid Mechanics | Chair of Turbomachinery and Flight Propulsion

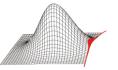
Idea: local cumulative density functions

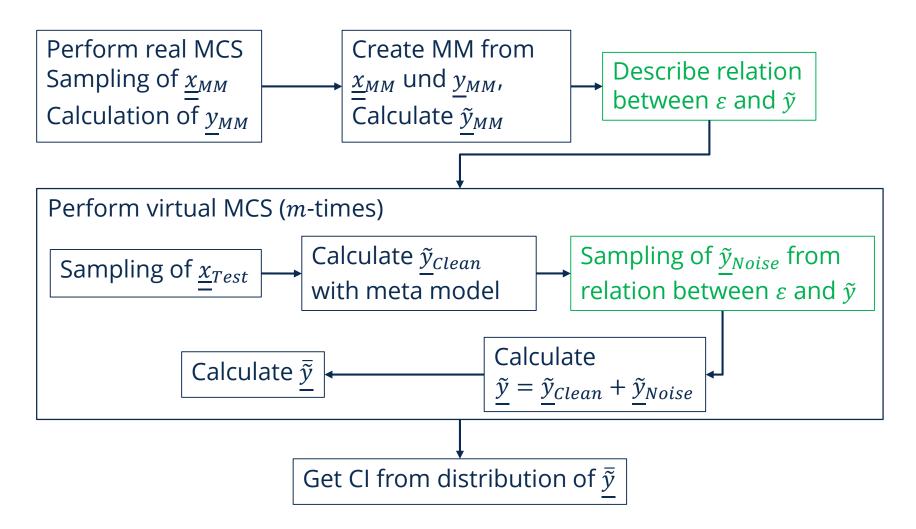


 \geq

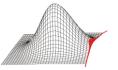
Meta-model-based Quality Assessment of Sample Estimates

3.3. Method M3



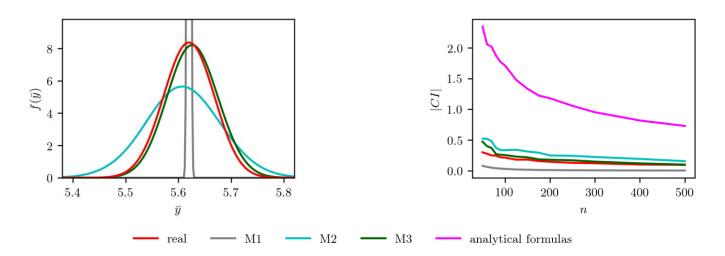


3.3. Method M3

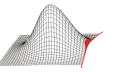


Faculty of Mechanical Science and Engineering | Institute of Fluid Mechanics | Chair of Turbomachinery and Flight Propulsion

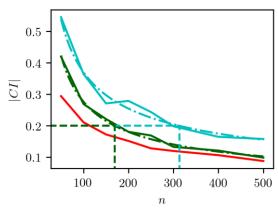
► LHS:

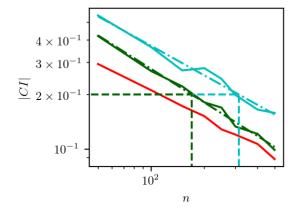


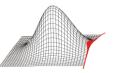
3.4. Prediction of required sample size



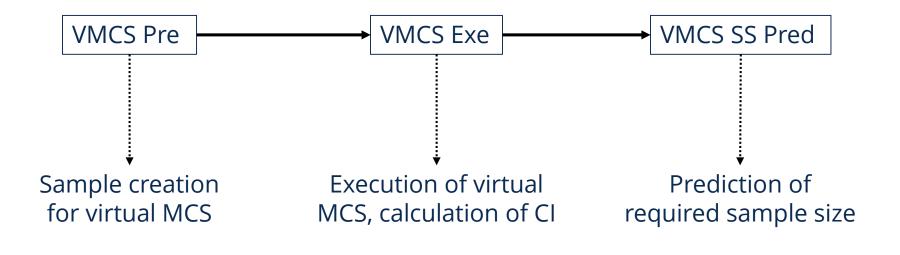
- Certain size of CI must be achieved
- Size of Cl known after MCS
- Methods can be used to predict required sample size
- > Steps:
 - > Create MM, perform virtual MCS at different sample sizes
 - > Determine size of CI at different sample sizes
 - > Approximate evolution of CI size
 - > Calculate required sample size

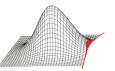




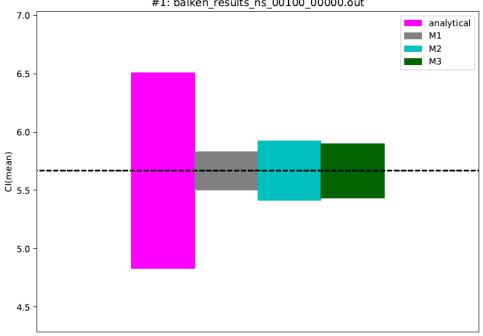


- Framework to calculate CI from given MCS
- Easy to handle, flexible usage
- Basis: MCS from ProSi

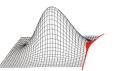




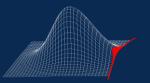
Output: xml-Format or visualization \succ



#1: balken_results_ns_00100_00000.out



- ➢ Goal: Predict confidence interval of MCS with LHS more precisely
- Idea:
 - > Approximate system behavior with meta model
 - Simulate MCS
- > 3 Methods:
 - M1: Meta model
 - > M2: Meta model + ε from PDF / CDF
 - > M3: Meta model + ε from relation between \tilde{y} and ε
- SRS: M1, M2, M3, LHS: M2, M3
- Cl is predicted more precisely
- Framework for application was developed
- Outlook:
 - > Application of methods on turbomachinery example
 - > Use of other meta model types
 - Performing of further tests



Thank you for your attention!

Andriy Prots, Lars Högner, Matthias Voigt, Ronald Mailach Andriy.Prots@tu-dresden.de

Dresden, October 10, 2019