

Faculty of Mechanical Engineering, Institute of Fluid Mechanics, Chair of Turbomachinery and Jet-Propulsion

- Extension of Latin Hypercube samples -

Robin Schmidt, Matthias Voigt, Konrad Vogeler

Dresden, 11.10.2013

STATEMENT

 Monte-Carlo Method with LHS is a multi-purpose way to tackle probabilistic analyses

QUESTION

• What determines the selection of the number of realizations?

ANSWER

 confidence intervals of the resulting statistical values (not considering probability of failure)

Figure 1: Confidence interval, schematic

Motivation

Example: upper confidence interval for the mean as a function of n_{sim}; determined by 1000 reps.

$$y_1 = \frac{(b_{u,1} + b_{u,2} - 1)}{\sqrt{2/12}}$$

Figure 2: 95%-CI of mean as a function of n_{sim}

CONCLUSION

- Size of the confidence intervals of the resulting values are determined by the number of realizations
- statistical quality of the Monte-Carlo Simulation (MCS) with LHS can be conservatively determined after its execution (calculation of confidence intervals of the resulting values)

OBJECTIVE TARGET for MCS + LHS

- start with a small number of realizations with sufficient (statistically reasonable) quality; especially for time-consuming deterministic calculations
- o improve quality by adding more realizations
- assessment based on the confidence intervals of the statistical measures

Motivation

Latin Hypercube sampling (LHS) State of the art Replicated Latin Hypercube sampling (rLHS) Evaluation

Outlook

CHARACTERISTIC:

 o each realization represents equal probability ∆P

APPROACH:

- \circ define number of realizations n_{sim}
- determine $\Delta P=1/n_{sim}$ wide intervals on F(b)
- select one value at random from each interval

PROPERTIES:

- good representation of cdf with "few" realizations
- more stable analysis outcomes than random sampling
- easier implementation than stratified sampling methods

Figure 3: LHS schematic

Extension of LHS:

PLEMING ET AL., 2005 – Replicated LHS

multiplication of a basis value; reduplication of the intervals; intervals must not be completely filled; uses Restricted Pairing (RP) for correlation control

SALLABERY ET AL., 2008 – Extension of LHS with correlated variables

focus on the correlation setting; reduplication of original lhs; algorithm for the calculation of the intervals to be filled in the multidimensional space with given rank correlation matrix

Calculation of Confidence Interval of LHS:

IMAN, 1981 – Replicated LHS

repeatedly execution of LHS to generate replicates; replicates are not mergeable; rule for the calculation of confidence intervals with the use of replicates

rLHS

INITITAL POSITION

- o define *basis* and *level*
- use "classic" LHS with n_{sim,start}=<u>basis</u> realizations

APPROACH

 Use "small" <u>basis</u> and reach the desired n_{sim,end} by replication <u>level</u> times

IMPLEMENTATION

- reduplicate the intervals on F(b) if necessary
- select one value at random from each free interval
- per replication step only <u>basis</u> values are added

IMPLEMENTATION

Figure 5: Reduplication 1

Example: U[0,1]; LHS with *basis* = 3: • *level* 1 – n_{sim}=6: reduplication of original intervals, fill free intervals

Example: U[0,1]; LHS with *basis* = 3:

- <u>level</u> 1 n_{sim}=6: reduplication of original intervals, fill free intervals
- <u>level</u> 2 n_{sim}=9: reduplication of intervals of level 1, determine D* as the largest negative distance between continuous and discrete cdf for each original interval (level 0)

$$D^* = \min_{1 \le i \le N} \left(F(y_i) - \frac{i}{N} \right)$$

place a random number per original interval in a free interval with respect to D*

Example: U[0,1]; LHS with *basis* = 3:

- o <u>level 1</u> − n_{sim}=6
- o <u>level 2</u> − n_{sim}=9
- <u>level 3</u> n_{sim}=12: if there are free intervals no reduplication is done and one value at random is selected per original interval from each free interval (in higher levels D* is used)

- start with "classic" LHS
- о use Restricted Pairing (RP) [IMAN ET AL., 1980; IMAN, 1981] for correlation definition

Motivation Latin Hypercube sampling (LHS) State of the art Replicated Latin Hypercube sampling (rLHS) Evaluation Outlook

Correlation coefficient vs. number of replicates

Correlation coefficient vs. number of replicates

K-S-value vs. number of replicates

Statistical measures of the input values vs. number of replicates

Generation of 2 variables: 2 x uniform, U[0,1]

Statistical measures of the input values vs. number of replicates

Generation of 2 variables: 2 x normal, N(0,1)

95% - confidence interval (CI) of result values

95% - confidence interval (CI) of result values

Evaluation

95% - confidence interval (CI) of result values

Figure 15: Cl vs. replicates

- Implementation of a replicated Latin Hypercube sampling with the ability to increase the sample size and to induce or keep a desired correlation among input parameters
- Analysis of the algorithm (influence of number of replicates) with more degrees of freedom
- Test of the performance against "classic" LHS in terms of:
 - difference in maximum correlation error
 - difference of the cdf
 - difference of the statistical measures
- Analysis of the CI calculation
 - influence of free intervals
 - deviation from experimentally determined confidence intervals

- *Pleming et al.*,2005, Replicated Latin Hypercube Sampling, AIAA 2005-1819, pp. 1-18
- *Sallabery et al.*,2008, Extension of Latin hypercube samples with correlated variables, Reliability Engineering and System Safety, *93*, pp. 1047-1059
- *Iman, R. L. and Conover, W.*, 1980, Small sample sensitivity analysis techniques for computer models with an application to risk assessment, Communication in Statistics Theory and Methods, 9(17), pp. 1749–1842.
- *R. L. Iman*, 1981, Statistical Methods for Including Uncertainties Associated with the Geologic Disposal of Radioactive Waste which Allow for a Comparison with Licensing Criteria, Uncertainties Associated with the Regulation of Geologic Disposal of High-Level Radioactive Waste, Gatlinburg, TN
- *Helton et al.*, 2003, Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliability Engineering and System Safety, *81*, pp. 23-69

Sample of size m from n input variables: $m \times n \text{ matrix} \quad \mathbf{B} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$ Desired correlation structure: $n \times n \text{ matrix} \quad \mathbf{T} = \begin{pmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ t_{21} & t_{22} & \dots & t_{2n} \\ \dots & \dots & \dots \\ t_{n1} & t_{n2} & \dots & t_{nn} \end{pmatrix}$

- (1) Mixing or rearrangement of the realizations after LHS (problem: perfect linear correlations)
- (2) Calculation of correlation matrix **C** (rank correlation of **B**)
- (3) Calculation (possible with Cholesky factorization) of the lower triangular matrix **Q** such that:

 $\mathbf{C} = \mathbf{Q}\mathbf{Q}^T$

 $\mathbf{T} = \mathbf{P}\mathbf{P}^T$

 $\mathbf{S} = \mathbf{P}\mathbf{Q}^{-1}$

 $\mathbf{R} = \mathbf{B}\mathbf{S}^T$

(4) Calculation of **P** such that:

T and C have to be a symmetric, positive-definite matrix

(5) Calculation of **S** such that:

(7) **R** will approximate **T**, the column of **B** must be sorted so that they follow the same ranking of values, as the columns in the matrix **R**