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Motivation

� Problem:
− Deterministic optimization does 

not feature manufacturing noise 
and degradation

� Solution:
− probabilistic simulation describing

variations of input parameters 
and corresponding system responses

� Opportunity :
− Monte Carlo Simulation (DS, LHC, oLHC ) 
− alternativ approach: Univariate Reduced Quadrature (URQ) [1]

3

compressor turbine

6. Dresdner Probabilistic-Workshop, 11th October 2013

[1] M. Padulo, M.S. Campobasso, and M.D. Guenov. Novel Uncertainty Propagation Method 
for Robust Aerodynamic Design. AIAA Journal, 49(3):530-543, 2011.
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Introduction to the URQ approach 4

� Subject: Finding an alternative approach, in comparison to expensive 
Monte Carlo Simulations to save calculation time for estimating 
�� � E � � and ��� � Var � �

� Basic Idea: Choose a deterministic approach that‘s based on a 
Gaussian-Quadrature with 3 nodes per dimension �

�� � ��
�� � �� � ��	��
�� � �� � ��	��

�� �

�0 �� ����

Build the density function �� � 	of the uncertain input parameter �
with 3 deterministic  chosen nodes ��, ��and ��for each dimension
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quadrature nodes, uncorrelated case
quadrature nodes, correlated case
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� Idea of URQ: 
• build 2� � 1 nodes � with corresponding weights #

• propagate each node through the response function � � of interest
• build mean of system response by

Calculation cost of 2� � 1 calculations

�� � ��
��� � �� � ��� 	��� 	��
��� � �� � ��� 	��� 	��

Question
How to find optimal weights # and scaling parameters $ ??

��	 … standard deviation of �
��,� … scalingparameter
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&,*� ��� � +��
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� Solution: comparison of coefficients between 
Gaussian-Quadrature and Taylor-series expansion
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� System of eight equations, its solution leads to:
� Optimal values of scaling parameter $

� Optimal values of weights w
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� Correlation of input parameters
• spectral decomposition:

• =��… input covariance matrix
• > … right eigenvector of =��
• ? … diagonal matrix of eigenvalues of =��

• URQ nodes with correlation: 

=�� � >?>@A

quadrature nodes, uncorrelated case
quadrature nodes, correlated case

�� � ��
��� � �� � ����	��
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This approach is called the

Univariate (no dependencies between parameters - only 
one dimension is altered to obtain each node 
→ Spectral decomposition)

Reduced (as few nodes as possible, Taylor is truncate d)

Quadrature (approximation of an integral via a sum )

Method
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Performance of the URQ 10

� Compare URQ and oLHC by using CFD example
� Performance: 

• DoE with 19 different compressor blade profiles
• each profile is defined by 14 deterministic 

design parameters

• uncertainty defined with 8 parameter � � � 8

where C � C D
• determine following system responses:

- mean of pressure loss
- variance of pressure loss
- mean of exit flow angle
- variance of exit flow angle

Question: „How much additional cost is needed to ge nerate equivalent estimates?”

C � 7				E			FGHI			�JKLM 		NGHI			�OKLM 			FPQ 				FJQ ∈ ST

U � JKLM
V

W�� �
U 9 UG�.

UGHI 9 UG�.
W�X �

YPQ 9 YPQG�.
YPQGHI 9 YPQG�.

W�Z �
YJQ 9 YJQG�.

YJQGHI 9 YJQG�.

D � W�…W�Z J ∈ S�Z
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� Accomplishment:
• reference (exact value) is oLHC with \ � 10.000	
• number of nodes for URQ not varying: 

�'() � 2� � 1 � 17
• number of nodes for oLHC varying:

�_P`a � 17	 equivalent	cost , 30, 50	and	100
• each oLHC- calculation was repeated 10x to show response 

variation :
�10 solution, out of that 

- 1 run with minimal distance to optimal solution
- 1 run with maximal distance to optimal solution

• build average out of all solutions of �o_Q � 19 profiles
� 1 average out of 19 profiles with minimal distance
� 1 average out of 19 profiles with maximal distance

6. Dresdner Probabilistic-Workshop, 11th October 2013



Performance of the URQ 12

ex
it 

flo
w

 a
ng

le
variancemean

pr
es

su
re

 lo
ss

re
la

tiv
e 

di
st

an
ce

 to
 e

xa
ct

 v
al

ue
 [%

]
re

la
tiv

e 
di

st
an

ce
 to

 e
xa

ct
 v

al
ue

 [%
]

re
la

tiv
e 

di
st

an
ce

 to
 e

xa
ct

 v
al

ue
 [%

]

\

re
la

tiv
e 

di
st

an
ce

 to
 e

xa
ct

 v
al

ue
 [%

]

URQ
oLHC (runs with min distance to optimal solution)
oLHC (runs with max distance to optimal solution)

6. Dresdner Probabilistic-Workshop, 11th October 2013

\

\

\



Performance of the URQ 13

• 10- to 20-times higher cost for oLHC- simulation to get equivalent 
approximations for the mean of system response

• 3- to 6-times higher cost for oLHC- simulation to get equivalent 
approximations for the variance of system response

• Reason: Comparison of coefficients between Gaussian- Quadrature 
and Taylor-series expansion doesn‘t feature cross-
derivative terms of the Taylor-series.

Why is there a difference between the 
approximation- quality of mean and variance ??
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Performance of the URQ 14

� Approximations of  system responses with Taylor- ser ies
• Mean ��

• Variance ���
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Validation of the error 15

� Exact response mean and variance are calculated 
analytically for a test function together with a uniform 
probability distribution

� The input standard deviation is repeatedly halved
� Result: error ratios converge to 16

→ Error of order q �IZ

6. Dresdner Probabilistic-Workshop, 11th October 2013



Aerodynamic blade -to-blade robust 
turbine blade optimization
� Problem definition:

16

subject to

r Y� 9 Y�Ust u v w Wx�G
r y u yx�G w Wx�G
r zJQ,{{ u zx�G w Wx�G
r |GHI u |x�G w Wx�G

} � ~�,�����@~̅�,�
~�,�@~�

where
W�,Q���. … isentropic total pressure at exit plane
W̅�,Q … mass-averaged exit stagnation pressure
W�,� … total pressure at inlet plane
W� … static pressure at inlet plane
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Aerodynamic blade -to-blade robust 
turbine blade optimization

17

� Back surface diffusion d is the diffusion from Mmax to TE.

� High shape factors H indicate flow separation. 
HTE,SS < 2 to insure there is no separation when flow reaches next vane.
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Aerodynamic blade -to-blade robust 
turbine blade optimization
� „NACA“ parameterization:
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Aerodynamic blade -to-blade robust 
turbine blade optimization
� Isight process:
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�� ∈ 	S��, 2 � 1, … , 33
�� , � � 1, … , 14

��, ��, �� , �� , …
\&�, �*

r } u }._G , …

RR customized
CMA-ES algorithm
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First results of turbine optimization
� First 39 CMA-ES optimization runs 
� Filled dots: All constraints satisfied; Green dot: Optimal solution
� Wall clock time per run: approx. 30 min.
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Summary of URQ method
• no tuning parameters
• only depending of the first four statistical moments of 

design parameters
• skewness and kurtosis of design parameters are covered
• correlation between design parameter can be included
• error of order q ��Z
• computationally much cheaper than oLHC
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Thank you for your attention!
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