

Robust Design Optimization of an Axial Compressor

Realize Your Product Promise™

Fluid Dynamics

Structural Mechanics

Electromagnetics

Systems and Multiphysics

Johannes Einzinger ANSYS Germany GmbH

ANSYS Motivation

- Turbo Machines show:
 - Rotating and stationary Parts
 - Transient Flow Field
 - Choke, Stall...

Dynamic Blade Loading

High Requirement for Optimization

ANSYS Primary Design, PCA Engineers

- 1.5 Stage Axial Compressor
- IGV(n=37)
- R1 (n=71, Gap @ Shroud 2% Span)
- S1 (n=91, Gap @ Hub 2% Span)
- Pressure Ratio Π=1.4
- Mass Flow Rate 10.6 [kg/s]
- Diameter d = 0.525 [m]
- Rot. Vel. Ω = 9300 [rpm]
- Blade Mach Number M_u=0.75
- Specific Speed n_s= 1.3
- Specific Diameter d_s=2.3
- Load Coefficient Ψ=0.45

- Parametric Geometry
- Automatic Meshing
- Automatic Solution
 Fluid Mechanics
 - Structural Dynamics
- Sensitivity Analysis
- Design Optimization
- Robustness Evaluation

ANSYS[®] **Geometry, Aero Dynamic**

2011

ANSYS Geometry, Blade Design

- CAD Design of
 - Hub/Shroud Solid

L15

1L14

LIRIZ

- Casing, Filets
- DesignModeler
- CAD-Interface

CFD-Mesh

Blend-Radius

ZULL ANSYS, INC.

Seometry Stage

September 15, 2011

Meshing, TurboGrid

S TurboGrid

😵 Turbo Mesh

1 StruboGrid •2 Strubo Mesh →3 Strubo Parameters

TurboGrid

TurboGrid

>3 D Parameters

A

metry

Geometry

Geometry Stage

Parameters

- Automated for Turbo Machinery
- Parametric Mesh Sizing

Expression Editor Expressions MeshSizeFactor J MinMeshAngle minila/Minimum Face Angle/@Outlet						
•	A	B	c	D		
1	ID	Parameter Name	Value	Unit		
2	Input Parameters					
3	🗄 🚯 TurboGrid (B1)					
4	Cp P1	MeshSizeFactor	1			
	New input parameter	New name	New expression			
6	Output Parameters					
7	🗄 🚯 TurboGrid (B1)					
8	P2 F2	MinMeshAngle	10.015	degree		
	A New output, parameter		New expression			

ANSYS CFD Simulation

- CFD Solver: CFX
- Nodal based FVM

$$\oint_{\mathcal{H}} \int \rho \varphi \, dV + \oint \rho \varphi \, \mathbf{V} \cdot d\mathbf{A} = \oint \Gamma \, \nabla \varphi \cdot d\mathbf{A} + \int_{\mathcal{V}} S_{\varphi} \, dV$$

- Coupled Solution + AMG
 - Mass & Momentum, Energy…
- Turbulence Model:
 - Shear Stress Transport
- -One sector by passage, MFR:
 - Profile Transformation
 - Periodic Interface

ANSYS Transient Blade Row Method

Profile	Time	Fourier	Harmonic
Transformation	Transformation	Transformation	Transformation
Mixing Plane	Time Inclining	Shape Correction	f(t)→F(Ω)
Frozen Rotor		Phase Shift	R&D

ANSYS CFD Post-Processing

- General Post-Processor
- Turbo Mode

Solution
 Results

>5 🖗 Parameters CFX

Pressure Contour 1

> 1.200e+005 1.145e+005 1.090e+005 1.035e+005 9.800e+004

- Highly Automated
- Customize able

ANSYS Quality Assurance Iteration Error

^{15 © 2011} ANSYS, Inc. September 15, 2011

ANSYS Quality Assurance Discretization Error

ANSYS Mechanical Simulation Procedure

- Mechanical Equation System $M \cdot \ddot{u} + D \cdot \dot{u} + K(u) \cdot u = f_0 + f(t)$
 - Linearization
 - Decomposition $u(t) = u_0 + \Delta u(t)$
- Static System (Pre-Stress) $K(u_0) \cdot u_0 = f_0$
- Modal Analysis $-\omega^2 \cdot M + K(u_0) \cdot \Phi = 0$
- Linear dynamic System $M \cdot \Delta \ddot{u} + D \cdot \Delta \dot{u} + K(u_0) \cdot \Delta u = f(t)$

Model Order Reduction

 $M \cdot \Delta \ddot{u} + D \cdot \Delta \dot{u} + K(u_0) \cdot \Delta u = f(t)$

• Approximation $\Delta u(t) = \Phi \cdot q(t)$

18 18 10

k

- leads to reduced dynamic System $\Phi^{T}M\Phi \cdot \ddot{q} + \Phi^{T}D\Phi \cdot \dot{q} + \Phi^{T}K\Phi(u_{0}) \cdot q = \Phi^{T}f(t)$
- orthogonality of Φ leads to $\ddot{q}_i + 2 \cdot \xi \cdot \omega_0 \cdot \dot{q}_i + \omega_0^2 \cdot q_i = f_{a,i}(t)$
- Fourier Transformation
- Time to Frequency Domain

$$\omega_0^2 - \Omega_k^2 + 2 \cdot \zeta \cdot \omega_0 \cdot \Omega_k \cdot j \cdot q_{i,k} = f_{q,i,k}$$

ANSYS Fluid-Structure Coupling

ANSYS Static Structural (Pre-Stress)

Static Solution:

- Displacement
- Strain & Stress
- Numerical Error
- Pre-Stress for further Analysis

Maximal

v. Mises Stress

~ 220 MPa

	Mode	Frequency [Hz]
1	1.	1537.3
2	2.	2931.7
3	3.	5448.2
4	4.	7053.
5	5.	7567.1
6	6.	11155

- Pre-Stressed Modal Analysis:
 - Eigen Frequencies and Vectors
 - Data for further MOR-Analysis

21

ANSYS Forced Response Analysis

- Harmonic Analysis:
 - Modal Superposition
 - Fluid Load F(Ω)
 - v. Mises Stress $\sigma_{v.M}(\Omega)$

6

ANSYS Process Summary and Objectives

ANSYS optiSLang Integration/Interface

no/fezim/fo0

- Direct Integration
- Correlation Matrix
- Coefficient of Prognosis
- 2D and 3D Plot
- Anthill Plot
- Pictures of Design xxxx

ensitivit

ANSYS Sensitivity Analysis, Maximal Stress

- CoP=86%
 Statistic is reliable
 Detect important Variables
 Parameter Reduction
- MoP is plausible

Blade Angle: Hub, Mid Leading Edge

Betaj

Te8 1.5

2.98e+008

.90e+008 .85e+008 .80e+008 .75e+008

456+00

406-00

25e+00

.10e+008 .05e+008 .00e+008

.90e+008 .85e+008 .80e+008

1.75e+008 1.70e+008 1.65e+008

-58

54 R1MidBetal

-52

September 15, 2011

R

© 2011 ANSYS, Inc.

ANSYS[®] **Sensitivity Analysis, Eigen Mode 2**

 CoP=91% MLS approximation of modefreq02 Coefficient of Prognosis = 91 % - Statistic is reliable - Detect important Variables Parameter Reduction MoP is plausible 1450

1762

1740 1720

1700 1680 1660

1640

1620

1600 1580

1560 1540

1520 1500

1480 1459

-52

-50

-46

ANSYS Sensitivity Analysis, Aero Dynamic

- CoP=64% and 65%
 - -small value
 - -Numerical error?
 - -Model error?
- Important Variables
 Parameter Reduction
- MoP is plausible

28 © 2011 ANSYS, Inc. September 15, 2011

ANSYS Trouble Shooting with small CoP

- Number of Evaluated Designs?
 –no, CoP(80)~CoP(150)!
- Numerical Error?
 no, Best-Practice!
- Model Error?
 - -yes, some Designs are transient!
- Overcome:
 - -Full transient Simulation?
 - -Transient Blade Row Method!?
 - -Use Result "carefully"!

ANSYS Design Optimization, Strategy

Sensitivity Analysis:

- Shows potential
- Indicates global optimum
- Parameter reduction
- Modify parameter space

Strategy:

- Get best Design from SA/MoP
- Evaluate this Design and get initial for:
- Optimization in sub space: ARSM
 - Small Number of Parameter
 - Global Optimum

ANSYS Design Optimization, Summary

	Initial Design	Best Design SA	Best Design Solved (MoP)	Best Design ARSM
Efficiency [%]	87.0	88.0	88.9 (91.0)	88.9
p _{tot} Ratio [-]	1.41	1.41	1.41 (1.44)	1.41
Max. Stress [MPa]	219	235	232 (230)	239
#Designs	1	150	1 (0)	100
32 © 2011 ANSYS, Inc. September	er 15,			

2011 ANSTS, IIIC. Septe

